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We study solutions of the equation L(D)u =0, where L(D) is an elliptic linear
partial differential operator with constant coefficients and only highest order terms.
For compact sets K<R" with connected complement we prove a Bernstein
theorem: if a function f on K can be extended to a solution of the equation on an
open neighborhood of X, then the supnorm distance from fto the polynomial solutions
of degree <n decays exponentially with 7. We give two proofs: a proof by duality
which makes use of the theory of functions of several complex variables, and an
elementary constructive proof using generalized Laurent expansions for solutions
of elliptic equations. Finally, we discuss the use of orthogonal polynomial expan-
sions, and the use of interpolation schemes, for the construction of polynomial
approximations with asymptotically optimal behavior.  © 1994 Academic Press, Inc.

1. INTRODUCTION

A central theme in constructive approximation theory is the relation
between the smoothness of a function and the speed at which it can be
approximated by polynomials. An important result of this type is the
following theorem of Walsh [W, Chap. IV], which sharpens earlier work
of Bernstein concerning polynomial approximation on real intervals.

1.1. TueoReM. Let K< C be a compact set such that C\K is connected
and regular for the Dirichlet problem. Let [ be a continuous function on K,
and for each integer n >0 define

D (f, K)=inf{|| f— pl x: p is a holomorphic polynomial of degree <n}.
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Let 0<p<1. Then limsup,_, . D,(f, K)""<p if and only if f is the
restriction to K of a function holomorphic on {z€ C: gx(z)<log 1/p}.

Here C=Cu {00} is the extended complex plane, and | f| x = supx | f];
and the Green function g, is the continuous function on C which vanishes
on K, is harmonic on C\X, and is equal to log |z| p]us a bounded function
near 0.

The purpose of the present paper is to prove a result similar to
Theorem 1.1 for solutions of elliptic partial differential equations L(D) u=
L(0/0x,, ..., 0/0x,) u=0, where L(x)=3,-ma,x* is a nonconstant
homogeneous polynomial on RY, with complex coefficients, which is never
equal to zero on RV\{0}. For each integer n >0 we define the vector space
%, of all complex polynomials p of degree <n which satisfy L(D)p=0 on
R”, and if f is a continuous function on a compact set K< R”" we set

d(f, K)=inf{|f—plx:pe L}

Our main result is the following,

1.2. THEOREM. Let K be a compact subset of R™ with connected comple-
ment. Let Q be an open neighborhood of K. Then there exists a constant
p<1 such that for any solution f of L(D)f=0 on € we have
lim sup,, ., ., d.(f, K)"" < p.

In the case of the Cauchy-Riemann operator L(D) = 8/0z = 3(6/0x +18/3y)
in R?, Theorem 1.2 yields a weak form of one direction of Theorem 1.1.
Resuits related to Theorem 1.2 in the case of the Laplace operator L(D)=
A=3*/dx}+ ... +8*/0x% in RY have been proved in [A] by a direct
construction using spherical harmonic expansions, in {BL] by duality
using techniques from several complex variables, and in [Z1, ZS] by the
method of Hilbert scales. As the present paper was being completed, the
authors received a preprint from Zaharjuta [Z3], who discusses many
related problems for the Laplace operator, and states that most of his
results can be extended to more general elliptic equations. It is possibie to
prove a converse to Theorem 1.2 under certain additional assumptions on
the set K, and this will be discussed elsewhere by the authors (see [BL,
Theorem 4.1]).

In this paper we will actually give two proofs of our main theorem: a
direct proof, by constructive methods, and an indirect proof, using
arguments based on duality and the Hahn-Banach theorem. The construc-
tive proof is elementary, but requires use of generalized Laurent expansions
for solutions of L(D)u =0 near infinity. The proof by duality is shorter,
but makes use of results from the theory of several complex variables.

640/78/2-3
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We present some preliminary results in Section 2. In Section 3 we give
the proof of our main theorem by duality. In Section4 we review the
theory of generalized Laurent expansions for solutions of L(D) f=0, and in
Section 5 we give some estimates for the error in series expansions. In
Section 6 we use series expansions and ideas from Andrievskii’s work [A]
to give the constructive proof of our main theorem. In the final Section 7
we discuss several techniques for the construction of polynomial
approximations with asymptotically optimal behavior.

2. NOTATION AND PRELIMINARY RESULTS

If ae R" and 0 <r < R, we use the notation B,(a)= {xeR" : |x—a| <r}
and A, g(a)={xeR":r<|x—a|l <R}, with the shortened forms B,=
B,(0), A, ,=A, z(0), and A,=A, .. For an open set Q = R", we will let
2'(2) and &'(2) have their usual meanings from the Schwartz theory of
distributions (see [H]), and we let {7, ¢ ) denote the action of the dis-
tribution T on the test function ¢. We let § denote the Dirac deita measure
at the origin of R”. If xeR” and a=(«,, .., ay) is an N-tuple of non-
negative integers, the symbols x* [a], «! have their usual meanings and
D*=(8/dx,)* ---(8/0xy)**. For a polynomial p(¢)=3 a,t*, we write
p(t)=> a,t* and p(D)=Y a,D* For each /=0, 1, 2,.. we let & denote
the space of all polynomials in R¥ with complex coefficients which are
homogeneous of degree /, and we regard £ as a complex vector space with
inner product

{p.q}=p(D)Gg=q(D)p for p,qe?. (1)

If |x|=1 we let Y,(t)=1* then the functions {Y,/\/E},a,=, form an
orthonormal basis for 2.

Throughout this paper L denotes a fixed element of #,,, m = 1, which never
vanishes on R\ {0}. Thus the linear partial differential operator L(D) is
elliptic. We recall that Ee 2'(R”) is called a fundamental solution for L(D)
if L(D) E=4. Our work on series expansions for solutions u of L{(D)u=0
depends on the existence of a particular type of fundamental solution for
L(D); for the following lemma see [J, Chap. 3] or [H, Chap. 7].

2.1. LEMMA. There exists a fundamental solution for L(D) which is a
locally integrable function on R™ of the form E(x)= E,(x)+ E,(x)log | x|,
where the restriction of E, to R¥\{0} is real-analytic and homogeneous of
degree m — N, and

E,=0 if m<NorNisodd;
E,e?, « if mzNandN is even.
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For the rest of this paper we let E(x)=E,(x)+ Ey(x)log |x| denote a
fixed fundamental solution for L(D) having the properties stated in
Lemma2.1. We mention that the constants appearing in our paper may
depend on N, L, and E. If dependence on other parameters is involved, this
will be indicated. In the special case L(D)=4" in R”, we may take

E(x)= cn s 1XI27N, if 2s< NorNisodd;
"~ lew s 11 Vlog |x], if 2s>Nand Niseven,

where ¢y , is a constant.
If xe RM\{0} is fixed, the function y — E(x —y) is a real-analytic; we
may write the Taylor series expansion in y about 0,

Ex—y)=73 0(y) @)
where
D*E
0P =(-1y 3 T2y ()

lal =1

This expansion is valid for y in some neighborhood of the origin in R™. It
follows that for fixed xe R¥\ {0}, each polynomial Q¢ satisfies

L(D) QP =0 onR”. (4)

In fact, we may apply the operator L(D) to each monomial in (2) and
combine terms to obtain the Taylor series for

y—>L(D)E(x—y), yeR"\{x}

since L(D) E(x —y)=0 near y =0, each monomial in this expansion must
have coefficient 0 so that L(D) Q) =0 near y =0. Thus, (4) follows since
0Me®.

2.2. LEMMA. There exists a constant My > 1 with the following property.
Let o be a multi-index, and if N is even suppose that |a| >m — N. Then

|D*E(x)| <a! M |x|m=¥-ls xeR¥\{0}. (5)

In particular, if | is a nonnegative integer, and we assume that |>m— N in
case N is even, then

0P (NI<IxI VI (Mo lylY ¥ 1 if xeRM\{0}andyeR".  (6)

jaf =1
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Proof. Since E is real-analytic on RV\{0}, it follows from the Cauchy
inequalities and the Heine-Borel theorem that there exists a constant
M, = 1 such that for each multi-index o we have

[D*E(x)| <a! M} if |x|=1.

If Nis odd or |a) > m — N, then D*E is homogeneous of degree m — N — |«
on RY\{0}, and (5) follows. The estimate (6) follows from (3) and (5).

For the rest of this paper, M, denotes the constant of Lemma 2.2.

2.3. COROLLARY. Let M > M, and r>0. Then the series 3.7 o |0 (y)l
converges uniformly, and Eq. (2) holds, for |x| = Mr and |y| <r.

Proof. If A={(x,y)eR"xR":|x|>Mrand |y <r}, and /, =max{0,
m— N+ 1}, then from (3) and Lemma 2.2 we see that

o

Y sup QPO Y (MY M (Mory Y1

1=l (x,y)ed I=1 |a| =1

I3
s(Mr)’"‘N Z (%) |

lal 20

=(Mry" "~ (1 —-—A:—;>"N.

It now follows from the Weierstrass test that the series 372, Q) (»)i
converges uniformly for (x, y) € A.

Now fix p>r with M, p < Mr, and fix xe R” with |x| = Mr. From the
result in the preceding paragraph and (4) we see that F(y)=Y,2,0'9(»)
is a well-defined, continuous function on B, which satisfies L(D) F=0 in
the sense of distributions; from the ellipticity of L(D) we conclude that F
is real-analytic on B,. Since the functions F(y) and G(y)= E(x—y) are
real-analytic on B, and agree near y=0, they must agree on B,. This
shows that Eq. (2) holds for ye B,<B,, which completes the proof of
Corollary 2.3.

3. PROOF OF THE MAIN THEOREM BY DUALITY

In this section, we given the proof of Theorem 1.2 by means of duality.
This proof may be compared with the proof for the case of harmonic func-
tions in [BL, Theorem 3.1]; there the authors make essential use of the
Kelvin transform for harmonic functions, which is not available in the
present generality. We use instead an argument based on the following
“two-constants” lemma for holomorphic functions on subsets of C*.
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3.1. LemMa. Let U be a bounded domain in CV. Let Ac UAR" be a
nonempty open subset of R™, and H a compact subset of U. Then there exists
a constant a=a(U, A, HYe (0, 1] with the following property. If g is a
holomorphic function on U which satisfies |g| <M on U and |g| <m < M on
A, then

lgl <m*M'~° on H.

Lemma 3.1 follows from a more general two-constants lemma [KI,
Proposition 4.5.6] for plurisubharmonic functions; we recall that a real-
valued function u defined on a domain U= C¥ is plurisubharmonic on T
if u is uppersemicontinuous in U and, for every complex line /= C¥, the
restriction of u to (components of) U~/ is subharmonic. One applies the
general two-constants lemma to the plurisubharmonic function u=log|f|.
We mention that in our setting, the inequality a > 0 follows from the fact
that A is not pluripolar; that is, the only plurisubharmonic function u on
C” which is equal to — oo on 4 is u= — oo (see [BL, Remark 4.2(b); K,
Proposition 4.5.41).

We remark that for N>2, any set AcRY<cCV=R?" is polar as a
subset of R?Y; that is, there exists a subharmonic function u# — o
on R?*M which is equal to —oo on 4. It is therefore essential for us
to use techniques from the theory of functions of several complex
variables.

We now prove Theorem 1.2. We may assume that the set Q in the
theorem is bounded, so for the proof we fix a compact set K < R” such that
RM\K is connected, and a bounded open set 2> K. We fix a function
Y € C5°(L2) which is identically equal to one on an open neighborhood D
of K. The connected manifold R¥ U {0 }\K has an exhaustion by an
increasing sequence of relatively compact subregions, and one of these sub-
regions must contain the compact set RY U {cc }\D; we let G denote this
subregion, with the point at infinity removed. We let R, =sup, .« | y|, and
fix a number R, > R, such that Qc B, ..

Now suppose that f is a solution of L(D)f=0 on Q. For each fixed
integer n>0, it follows from the Hahn-Banach theorem and the Riesz
representation theorem that there is a complex Borel measure u=y, of
total variation one supported on K such that

deu=0 forall pe %,
and

jfdu=d,,.
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We may regard F=yfe C°(2) = C(RY), and then
d"=f Fdu=p+ K0),
K

where F(x)=F(—x). We have pu* F=(usxF)+x6=(u+F)x L(D)E=
ji » L(D) F, where fi(x)= (u * E)(x), and hence

d,=(—1)" jﬂw fi(x) L(D) F(x) dx. (7)

From now on we will assume that n>m — N. Then for |x| >2M R, we
obtain the estimate

|a(x)| = . . T ero du(y)} sup [0(y)

Ki—n+1 I=n+1yek

[ee)

< X "N sup (Mo Iy} X1

I=n+1 yek fef =17

oc

< ). MRV '(MyRy) Y 1

I=n+1 || =1
o« RO ! 1 !
— QMR Y (-) (-) T
o I=n+1 Rl 2 jaf =1
R n+1
<(2M0'"Nz(°> ()21
l=n+1 la| =1

RO n+1 1 fex|
<(2M0R1)MVN<—R;—> Z (5)
1 [E1=2Y)

where ¢=2"(MyR,)""; in this string the first equality follows from
Corollary 2.3; the first inequality follows from the fact that u has total
variation equal to one; the second inequality follows from Lemma 2.2; and
the third inequality follows from the fact that each index / is nonnegative
and satisfies m—- N—Il<m— N—n<0. We will actually apply estimate (8)
for those points x in the open annulus A=A,y &, 3a708,-

Using the fact that G is arcwise-connected, it is easy to see that
G N By, g, is also; it follows that H= G N B,y ., is a connected, compact
set which contains 2\ D and the annulus 4.
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We note that for each R>0 there exist positive numbers r=r(R)< R
and C=C(R) with the following property: if u is any solution of
L(D)u=0 on a ball B=B,(x)<=R”, then there is a holomorphic function
# on the complex ball B=B,(x)= {ze C":|z— x| <r} which agrees with
u on the real ball B,(x) and satisfies |@|z<Cllullz (see [ABG,
Lemma 2]). Now for each x e H we may find a radius R(x) such that the
closure of the ball B=Bg,,(x) is disjoint from K, and by the preceding
remark there is a holomorphic function g, on Esﬁ,( reey(X) which agrees
with fi on the real ball B, z,(x) and satisfies

lg<llp < C(R(x)) 121l 5-

By compactness of H, we can find a finite number of points x,, ..., x,, € H
such that the corresponding smaller real balls {B, ., (x;)} cover H. Thus

U= U Br(R(Xi))(xi)

is a bounded domain in CV which contains H; and we obtain a well-
defined holomorphic function g on I which agrees with fi on the inter-
section TN RY, by setting g= g, on ﬁ,(R(x,,)(x,.). If we now set
U =) Bg,)(x;), then since u has total variation equal to one, we have the
finite bound

lal<Q= sup |E(x—y)] onU.

xelU,yeK
It follows that
legle<C laly<CO, 9)

where € =max C(R(x,)) is independent of n. Now if a= a(T, 4, H) denotes
the constant of Lemma 3.1, then in view of eftimates (8) and (9) we may
apply 3.1 to the holomorphic function g on U to obtain

n+l\a
Iﬁ(x)l=|g(x)l=S(CQ)““(C<%’> ) xeH  (10)

From (7) and (10) we see that

d,<(CQ) 4 c* (5—)(’ (sup |L(D) F]) A(@\D),
Rl aN\D

where A denotes Lebesgue measure. Since C, Q, ¢, Ry, R, and a>0 are
independent of n, this competes the proof of Theorem 2.1.
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4. GENERALIZED LAURENT EXPANSIONS FOR SOLUTIONS OF
ELLipTiC EQUATIONS

All solutions of the homogeneous equation L(D)u =0 are real-analytic
[H, Theorem 4.4.3], so that we can expand these solutions locally in power
series. In this paper we will also need generalized Laurent expansions for
solutions of the homogeneous equation L(D)u =0 on a neighborhood of
infinity (that is, on the complement of a compact set). Theorems con-
cerning series expansions for solutions of elliptic equations were obtained
by Lopatinsky, John, Wachman, Balch [Bal], Zemukov [Z], Harvey and
Polking [HP], Meshkov, and Tarkhanov [T]. We give here a sharpened
version of the Laurent expansion in [Z]; a more general Laurent expan-
sion, for solutions of elliptic systems, is developed in [T]. If L(D) is the
Cauchy-Riemann operator d/6Z on R? these series expansions give special
cases of the classical Laurent expansion. If L(D) is the Laplace operator 4,
these series expansions give special cases of the well-known expansion of
harmonic functions in terms of spherical harmonics (see [K, Chap. 5]).

We now state the Laurent expansion theorem. We define %=
{weC®R"): L(D)w=0 in R"}. For each / we define #=
{he?:L(D)h=0in R"}; we recall that & carries the inner product (1),
and let &, be the orthogonal projection from % onto the subspace .

4.1. THEOREM. There exists a constant M >1 with the following
property. If acR”, r>0, and u is a solution of L(D)u=0 on A,(a), then
there exists a unique sequence we ¥, hye #, h, € H#,, ... such that

u(x)=w(x)+ i h,(D)E(x—a) (11)

I=0
uniformly on A, (a).

The series (11) is called a generalized Laurent expansion for u about a. If
aeR”™, we have the generalized Laurent expansion

u(x)=w(x)+ Y, h(D) E(x) (12)

=0

for a function u about the origin if and only if u(x—a)=w(x—a)+

2o h (D) E(x —a) is the generalized Laurent expansion for the function
u(- — a) about the point a; for this reason we will often restrict our attention
to generalized Laurent expansions about the origin. We now give explicit
formulas for the terms in the expansion.



ELLIPTIC EQUATIONS 199

4.2. THEOREM. Let u be a solution of L(D)u=0 on a neighborhood of
infinity, with generalized Laurent expansion (12) about the origin. Suppose
that iie 2'(R"™) coincides with u on a neighborhood of infinity. Then

w=i—Ex L(D)d,
and for each | we have
h(D) E(x)=(L(D) &, Qf"),  xeR"\{0}.

4.3. Remark. If ue 2’'(R"), and u is a solution of L(D)u=0 on a
neighborhood of infinity with Laurent expansion (12) about the origin,
then the following conditions are equivalent:

(a) w=0.
(b) u=ExL(D)u
(¢) u=E« T for some distribution Te &'(R").

In fact, the equivalence of (a) and (b) follows from Theorem 4.2 with &= wu.
Clearly (b) implies (c); and if (c) holds, we have

E+xL(D)u=E+L(DNE+*T)=E+(3+T)=Ex*T=u,

so (b) holds.

If u is a solution of L(D)u=0 on a neighborhood of infinity which
satisfies the equivalent conditions in 4.3, then the generalized Laurent
expansion of u about any point aeR” will be of the form u(x)=

1= o hi(D) E(x— a), and we say that u has zero entire part.

Before giving the proof of Theorems 4.1 and 4.2 we state a well-known
lemma [F, St, V].

44. LemMa. If 1€ {0,1,..,m—1} we have #=P. If Izm, then H, is
the orthogonal complement of {Lp-pe%_,,} in P.

Proof. The first assertion is obvious, and the second follows from the
fact that for pe #_,, and ge % we have

{Lp.q} =L(D) p(D) §=p(D) L(D) = {p, L(D) 3}

We now prove Theorems 4.1 and 4.2. We will prove that Theorem 4.1
holds with any constant M which is greater than the constant M, of
Lemma 2.2. It suffices to prove Theorem 4.1 for a=0, and in this case the
theorem follows from (1°) and (2°)(a) below. Theorem 4.2 follows from
(2°)(b) and (2°)(c).
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(1°) Let M>M,. Let u satisfy L(D)u=0 on A,, where r>0. Then
there exists a sequence we'¥9, hoe H,, h e H,,.. such that (12) holds
uniformly for x| = Mr.

Proof of (1°). Choose p >r with My p < Mr. It is easy to construct a
function uoe C*(R") which coincides with u on A, ,,,. We define
w=uy,— E * L(D) uy and note that

L(DYw=L(D)uy— (L(D)E)* L(D)ug=L(D) ug— 6 * L(D) ug=0,

so we%. If |x| = Mr, we conclude from Corollary 2.3 that

u(x) —w(x)=[Ex L(D) uoJ(x) = .f E(x —y) L(D) ug(y) dy

= ¥ pdD) E(x), (13)

where p,=(—1)Y 5=/ (KL(D)uy, Y, )/a!) Y, €P; the series in (13)
converges uniformly for |x| > M,r. If we let h,=r, p, then from Lemma 4.4
we see that p,(D) E(x)=h,(D) E(x) for x#0, so (1°) follows from (13).

(2°) Let u be a solution of L(D)u=0 on A,, where r=0. Let F>r, and
suppose iie @' (RY) coincides with u on A;. Let p>r and suppose we %,
hoe #,, h, € H#,, .. have the property that (12) holds uniformly for |x| = p.
Then

(@) {h,q}=(-1)V<L(D)@& > if ge A,
(b) h(D) E(x)=(=1)T -, ({L(D) & Y,)/a!) D*E(x),
(c¢) w=iu—-FExL(D)a.

Proof of (2°). (a) Let ¢ Cy°(R") be identically equal to one on a
neighborhood of RY\(A; N A,). If g€ 5, then L(D)(g¢) is supported on a
compact subset of A;nA,. Thus

(L(D) &, §) = <L(D)(d—w), 36
— (= 1) Cii—w, L(D)d9)>
— (= 1) Cu—w, L(DYG))
—(—1)" 3 (hy(D) E, L(D)G#))
k_

=0

(—1)* L(D) E, hi(D)(34)>

0

™Ms T8

(—=1)€ <3, h(D)(G4)>
k=0

=(=1)"{h, q}.
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(b) Define p,=(~1)'Y -, (KL(D)& Y,)/a) Y, €. U ges,
it follows from (a) that {h,q}=(—1)<{L(D)d §)=(-1){L(D)a,
Yia=: {Yes g} Yo /a)> = {p, q}. It follows that h, = =, p,, From
Lemma 4.4 we conclude that h,(D) E(x)=p,(D) E(x} for x#0, which
proves (b).

(c) From the proof of (1°) we see that there are functions
u,e C*(RY), ve¥%, gy, g,eH,, .. such that u, coincides with « on a
neighborhood of infinity, v=wu,— E* L(D)u,, and u(x)=v(x)+
> o 8:/(D) E(x) uniformly on a neighborhood of infinity. From (a) it is
clear that 2,=g, for each . We conclude that w(x)=v(x) for |x| large, and
hence for all xeR” by the real-analyticity of elements of . Since the
distribution 7 = u, — i lies in &'(R"), we have

ExL(DYuy— ExL(D)i=ExL(D)T— (L(D)E)* T=06xT=T=ug—1ii
and hence w=v=uy— E* L(D)uy=1— E* L(D) 1.

5. ERROR ESTIMATES FOR SERIES EXPANSIONS

Solutions of the homogeneous equation L(D)u =0 can be represented
locally by power series, and near infinity by generalized Laurent expan-
sions. In the present section we estimate the truncation error for these
series expansions.

We first discuss the truncation error for local series expansions. Let » be
a solution of L(D)u=0 on B,, where r>0. For all x in an open
neighborhood U of the origin the Maclaurin expansion of ¥ must converge
uniformly to u; if we group together the terms of the same order we see
that for xe U we have

ux)= ¥ g,(x), (14)
1=0
where
D*u(0
qix)= 3 u‘( )x“. 15)
s, o!

The argument used to prove (4) shows that each polynomial ¢, satisfies
L(D)q,=0 on R,

5.1. THEOREM. There exists a constant ce(0,1) with the following
property. Let u be a solution of L(D)u=0 on B,, where r >0, with expan-
sion (14), (15). Let I, be a positive integer, and s(x) = o< <4, 41(x). Then

Jue(x) — s(x)| <<|_3_|)’0 sup luf,  |x|<er

B,
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Proof. It follows from [ABG, Lemma 2] that there exist constants
pe(0, N~'?) and C,>1 with the following property: if >0 and u is a
solution of L{(D) u=0 on B,, then there is a holomorphic function & on the
polydisk 11, ={(z,..,zy)eC" :each |z;| <pr} with d=u on R"n1I,
and

sup |i(z)] < Co sup |u(x)]. (16)

a, B,

Now under the hypotheses of the theorem we have for |x| < pr/2 the
estimate

|u(x) —s(x Z g, (x

=1

< Cofsup ul) 5 (

1=l

NG
o(sup '"'),Z,0< " )
2oz

<co(sup|u|)( )

1)
= 2¥C, (sup ) (2 "") ,
pr

where the second inequality follows from applying the Cauchy inequalities
to & on I1, and using the estimate (16). Thus Theorem 5.1 holds with
c=p/2V*1Cy).

Our next result is an estimate for the truncation error in the generalized
Laurent expansion (12}).

5.2. THEOREM. There is a constant J > 1 with the following property. Let
u be a solution of L(D)u=0 on A,, where r >0, with generalized Laurent
expansion 3.[° . h,(D) E(x). If 1y is a positive integer satisfying l,>m — N,
and s(x) =3 <<y /(D) E(x), then

l (x)—S(X)|<(Ir|>m N<£>Iosuplu|, Ix] = Jr.

lx' A, 2o

The proof of Theorem 5.2 will depend on the following well-known
theorem. It may be proved by the argument used in [B, Lemma 3.5].
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5.3. THEOREM. Let K be a compact subset of the open set Q< R”. For
each multi-index a, there exists a constant C=C(K, Q, o) such that if u
satisfies L(D)u=0 on £, then

sup |D%u| < Csup |u|.
K 22

5.4. COROLLARY. For each multi-index a there exists a constant
C = C(a) with the following property. If u satifies L(D)u=0 on A, ,,, where
r>0, then

sup |D%u| < Cr~" sup |ul.
Aarzsr Ay 2

Proof. This follows from applying Theorem 5.3 to the function
U(y) = u(ry), WIth K= A4/3, 53 and Q = Al, 2.

Proof of Theorem 52. We recall that M, denotes the constant of
Lemma 2.2, and that 2.3 and 4.1 hold with any constant M > M,. Let
ne C*(R") be a fixed function such that #=0 on B,; and n=1 on
RY\By;. If we define

N,=sup{|D*n(x)|: xeR", la| =1} (amn
and n,(x) =n(x/r), then
|D*n, | < Niyr~™  onR¥ (18)

We define the function #e C*(R") to be equal to n,u on A, and O else-
where. Then # coincides with u on a neighborhood of infinity, so by use of
2.3, 4.1, and 4.2 we obtain

wx-s)=] |3 orm|uiaid. x>
(19)

To estimate the sum in the bracket, we note that for |x| >2M,r and
|yl <5r/3 we have from Lemma 2.2

> i M\ /5
S eR0I< Y |x|m—N(~°—) (g) Y1
=0 =1 le la) =1

hod M\ /5!
)
1;10 x| 6 |a§—-l
5 lat
S 2Mr)lo|x|m—N-h Z <~>
>0 \O

=6N(2M, )P |x|" Nk (20)
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We now note that there exist complex numbers c,5, depending only on
L{D), such that

LD)a(y)= ) cap(D*ny)ND u(y)). (21)

lx+Bl=m

Combining Corollary 5.4, (18), (19), (20), and (21), we obtain

m—N 2M Iy
)= st <o (1) () sup i, 161> 2¢0n, (22)

|xl A2

where Co=12"Vy 31, 1 g1 = m I€ap] N5 C(B); here V denotes the volume of
the unit ball in R”, and C(f) denotes the constant of Corollary 5.4. From
(22) we obtain Theorem 5.2 with J = (max{C,, 2M,})>

6. PROOF OF THE MAIN THEOREM BY CONSTRUCTIVE TECHNIQUES

In this section we give the constructive proof of Theorem 1.2 in case
m< N or N is odd. This argument may be extended to give a constructive
proof of Theorem 1.2 in case m> N and N is even, starting with a version
of Lemma 2.2, for all multi-indices «, which takes into account the
logarithmic terms in the fundamental solution E; we omit the details.

6.1. LEMMA. Assume that m<N, or that N is odd. If A>1 and T> 1,
then there is a constant C = C(A, T) with the following property. Let r >0
and zeB,. Let u be a solution of L(D)u=0 on A, with generalized Laurent
expansion 3.;°  h, (D) E(x). If 1y is a positive integer satisfying ly>m — N,
and $(x) = Yo <1< k(D) E(x), then

sup |s| <C"sup |ul.
A/lr, T4r(2) A1', 2r

Proof. The proof depends on the elementary inclusion

AAr, TAr(z)CA(Afl)r, (AT+1)r(O)' (23)

As in the proof of Theorem 5.2, we let e C®(R”™) be a fixed function
such that =0 on B,,; and =1 on R¥\B; ;. If we define N, by (17), and
n,(x)=n(x/r), then (18) holds. We define the function &ie C®(R") to be
equal to n,u on A, and O elsewhere. Then # coincides with ¥ on a
neighborhood of infinity, so from Theorem 4.2 we obtain

s(x)=

5 Qﬁ*’(y)]L(D)a(y)dy, xeRM {0} (24)

4r/3< |yt < 5r/3 |:0<1<,0
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To estimate the sum in the bracket, we note that for |x| = (4—1)r and
| ¥| <5r/3 we have by Lemma 2.2

Y 1eP0N< X |x|'”‘N(£—A_—4%;)I<%)I T 1

Ogi<ly 0gli<hy faf =1

{
<3 e (3) 3

O0</<f ) =7

5\l
<lxmrert Y <g)

la] 20

= 6N |x|mNCh (25)

where M, is the constant of Lemma 2.2, and C; =max{1, 2M,/(4—1)}.

We next recall that there exist complex numbers ¢,z, depending only on
L(D), such that (21) holds. Combining Corollary 5.4, (18), (24), (25), and
(21), we see that

m—N
ls(x)] < C,CP7! il sup |ul, |x[=2(4-1)r, (26)
! r

A2

where C, = 12"V Y ., g =m |Cagl N1y C(B); here V', denotes the volume of
the unit ball in R¥, and C(B) denotes the constant of Corollary 5.4. From
(23) and (26) we obtain Lemma 6.1 with C=max{C,, Co,(4~1)""7%,
C,(AT+ )"~V

We now prove Theorem 1.2 under the assumption that m< N or N is
odd. We let ce(0, 1), J>1, and C(A4, T)>1 denote the constants of 5.1,
5.2, and 6.1, respectively; 4 and T will be chosen below. We may write
Kc BRO, where R, >0, and we set R=2R,/c, so that

¢R

1x| S—z— if xek. (27)

The connected manifold RY U {c0}\K has an exhaustion by an
increasing sequence of relatively compact subregions, and one of these
subregions must contain the compact set RV U {0 }\2; we let G denote
this subregion, with the point at infinity removed. Let ye C{°(£2) be
identically equal to one on an open neighborhood of Q\G. We regard
f=fe C2(R2)c CE(RY), and then

Jx)=[ E(x=y) L(D)J(») dy,  xeR¥,
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Using the fact that G is arcwise-connected, it is easy to see that
G By, ,is also; it follows that H=G B, , is a connected, compact set.
We let d be the distance between the disjoint compact sets X and H, and
define r = min{1, d/(3J+ 2)}. The family of all open balls of radius r which
intersect H is an open cover of H; by the Heine—Borel theorem there is a
finite subfamily # which covers H. Note that the distance from the center
of any ball Be # to K is at least (3J+ 1) r.

We may select nonnegative functions ¢z C;°(B) for Be %, such that
S scs@s=1o0n H, and hence on supp L(D) f. If we define

fulx)=] E(x=y) 0a(y) LDV J(3) dy,

then f=f=% Bea fs on K. Theorem 1.2 now follows from the following
claim: for each Be # there is a constant p = p(B) € (0, 1) with the following
property: for every solution u of L(D) u=0 on RY\(supp ¢ z) with zero entire
part we have lim sup, _, ., d,(u, K)*" < p. For the rest of this section we fix
the ball Be 4, and prove this claim. The proof requires four preliminary
results.

(1°) The set \Jge o B is connected.

In fact, this set may be regarded as the union of the connected set H and
the balls Be #, and each of these balls intersects H.

(2°) There is a finite sequence of open balls of radius r,
E = Br(ao)s Br(al)9 ey Br(aZ)’

such that B,(a;) " Br= ; each center a,e B,(a,_,) (for | <i< Z); and the
distance from each center a; to K is at least 3Jr.

In fact, using (1°) and an elementary connectedness argument, we see
that there is an even integer Z and a sequence B=B,(a,), B,(a,),
B,(a,), .., B,(az) in # such that B,(a,)nBy= &, and each ball B,(a,)
intersects B,(a;,,). If we define a,,, to be the midpoint of the line
segment joining a,; and a,,, ,, then (2°) holds.

The open balls B,(a;) selected in (2°) will be fixed for the rest of the
proof of 1.2. The constants appearing in this proof are understood to
depend on the compact set K and on the balls selected in (2°).

(3°) There is a constant A > 1 such that the distance from each center a,
to K is at least 2JA'r, and B,z (a;) N Br= &. Moreover, there is a constant
T=T(A)>1 such that Byc B, z,(a;).
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(This is clear from the properties in (2°).)

(4°) There are positive constants €,, C, and v with the following
property: For every solution u of L(D)u=0 on R¥\(supp @) which has
zero entire part and satisfies

sup |ul =1, (28)

A, 2{a0)
and every ¢ € (0, &g), there exists a solution v of L(D)v=0 on By such that

lu—vlic<e

and

ol <.

To prove (4°), we define

—qa. m—N
C0=max{('i—i—a—'—l) :xeK,OsiSZ},
A'r

and we let ¢g=Cy-min{1, 2¥~™}. Now let u be a solution of L(D)u=0
on R¥\(supp ¢3) satisfying (28), and &€ (0, &,). We may then select a
positive integer n>m — N such that

2n—1<

CoZ _ 27, (29)
¢
We let 1> 2 be an integer such that 2'~!'>max{C(4, 2), C(4, T)}.

We now construct the desired solution v of L(D)v=0 on By by
adapting a technique used by Andrievskii in his study of harmonic
functions [A]. We set s, =u, and we inductively define s, to be the first
nt' terms in the generalized Laurent expansion of s; about a; (for 0<i<
Z—1). (That is, we inductively define s, 1(x)= <)< #,(D) E(x —a;),
where the generalized Laurent expansion of s, about a; is s,(x)=
Y20 (D) E(x—a;).) We then define v=s,.

From (3°), 5.2, and 6.1 we conclude that

Co .
"5,'+1_Si||1(<;,7 "Si”AAx,‘ui,(a,-), 0<igZ-2, (30)
and

”Si+ 1 ||AAi+l,‘2Ai+l,(ai+l)< C(As 2)"" ”Si ||AAI,,2Ai,(a,-), 0 SISZ—— 2 (31)

640/78/2-4
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From (31) we obtain

1520 a i nantay S C(A, 270 #1350+ 7D = O(4, 2)( - =N L ntel =),

1<igZ—1. (32)

From (3°), 5.2, and 6.1 we conclude that

C
lsz—57_4 ”Ks'z—,z_gm sz ”AAZA,'MZ—I,(az-LJ (33)
and
15211 a sz, razrtar < CCAy TV U522 1 la sz, pz- ez )- (34)
From (34) and (32) we obtain
15211 a sz, razsiazy < C(A, TY™* 7" 277 =D g gt =, (35)
We now have
C i Co € ,
!lsi+1—s,~||,<<2—,f’,;2"" ”=2—3<§, 0<i<Z—1, (36)

where the first inequality follows from (30) and (32) for 0<i<Z—2, and
from (33) and (32) for i=Z — 1; and the last inequality follows from (29).
We conclude from (36) that

Isz—ullx<e (37)

From (3°), (29), (35), and (37) we see that (4°) holds with v=s_, the
constants of (4°) being C=(2C,Z)" "' and v=1r%—1.

We now complete the proof of the claim above. We continue to let &,
C, and v denote the constants of (4°), and we fix a number 6 € (0, 1) such
that §* > 3/4. It suffices to prove the claim for any solution u of L(D)u=0
on R\ (supp ¢p) satisfying (28), and we let u be a fixed function with
these properties. For each positive integer / such that 6’ < ¢, we may apply
(4°), with £ = ¢, to obtain a solution v, of L(D)v,=0 on B such that

lu—v,llx <o’ (38)
and
C
sup |v,| < 5w (39)

Br
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and according to 5.1 and (27) there is a polynomial s,€ %,_, <%, such
that

1
lv;— s/l x < 5380p |l (40)
2" pa

From (38), (39), and (40) we conclude that |ju—s,| < &'+ C(2/3)" The
claim above follows from this, and we have completed the constructive
proof of Theorem 1.2 in case m< N or N is odd.

7. CONSTRUCTION OF POLYNOMIAL APPROXIMATIONS BY ORTHOGONAL
EXPANSIONS OR BY INTERPOLATION

In this section we give conditions under which one may use orthogonal
polynomial expansions or interpolating polynomials to obtain approxima-
tions to a function on a compact set K< R”" with asymptotically optimal
behavior.

If u is a positive measure with support in the compact set K = CV, we say
that the pair (X, u) has the Bernstein-Markov property provided that for
each &> 0 there exists M >0 such that || pllx < M(1 +¢)%¥%? || p|l,, for all
holomorphic polynomials p; here || p|l*= [« |p|* du. By combining results
of Nguyen Thanh Van and Zeriahi [NZ] and Plesniak [P] we obtain the
following result: if K< RY < C" has the property that every point of 9K is
analytically accessible from int K, and u, is N-dimensional Lebesgue
measure restricted to K, then the pair (X, uy) has the Bernstein—Markov
property. Here we use the notation ¢K and int X for the boundary and
the interior of K in R"; and we say that a point aedK is analytically
accessible from int K provided that there exists a real-analytic function
h:(—1,1)—R" such that (0, 1)) cint K and h(0)=a.

The following theorem shows that if (K, u) has the Bernstein~-Markov
property, then orthogonal polynomial expansions may be used to construct
polynomial approximations with asymptotically optimal behavior.

7.1. THEOREM. Let K< RY be compact, and let u be a measure on
K such that the pair (K, u) has the Bernstein—-Markov property. If f is
a continuous function on K such that limsup,_, . d,(f, K)""=p<1, and
{pn} is the sequence of best L*(u)-approximants to f in ¥,, then
lim SUup, » “f_pn “ ¥n=p'

Proof. Without loss of generality we may assume that p(K)=1. Let
re(p, 1) be arbitrary. Then there exist a constant M >0 and polynomials
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q.€%, such that | f—q,ll«<Mr" for n=1,2,... For each n we then
obtain

Ipa=SN2< g, =fll2< g, —flx < Mr™

Hence ||p,—p,_ |, < Mr*(1+r~") and, in particular, po+ X", (P, —Pn_1)
converges to fin L*(u). The polynomial p,(x) =Y, <, a/'x* extends to a
holomorphic polynomial P,(z)=Y , <, al"z* of degree <nin C"; we then
see from the Bernstein—-Markov property that for each e (0, r ~' — 1) there
is a constant A7 >0 such that

1Pn=Pn s Ik S M +6Y 1 Py—Pa 12 S MM+ )[(1+6)r]".

Thus, po+ >, (p,—P._ 1) converges uniformly to f on K and

n=1

Z, (Pe—Pi-1)

n+1

SMM(A+r D[ +e)r) (1= +e)r] 7Y

”f_pn “K=

K

so that lim sup, _, , || /—p.lIl ¥" < (1+¢&)r. The theorem follows.

Finally, we discuss the construction of asymptotically optimal polyno-
mials by interpolation. We may order a basis e, = e,(x), e,, ¢3, ... for |J, 2,
by increasing degree, with any ordering for those polynomials of the same
degree: if m(n)=dim %,, the set {e,, .., €,,.,y} forms a basis for %,. Given
a compact set K= R", choose m(n) points 4= {4, .., A7) } = K and
form the generalized Vandermonde determinant.

Vn(A(")) =det [ei(AJ('"))]i,j= 1, .., m(n)*
If V,(4")+0, we can form the fundamental interpolating polynomials

VoA, o X,y AZ))

(n) =
lj (x)_ Vn(A(,,)) k)

=1, .., m(n).

(Here the x in the right-hand side occurs in the jth slot.) Note that
[{"(A{™) =0, and each [ is a linear combination of {e,, .., €, }; hence,
I"e %, We call

m(n)

A,=sup ) [[M(x)|
xeK j=1
the nth Lebesgue constant for K, A™. Given f defined on K, we let

m(n)
(L, N)(x)= Y fA) 17(x)

J=1
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be the interpolating polynomial for f at the points A™. Thus L, fe %, and
(L, /)AM)=f(A{"). We say that the compact set K is determining for
U, &, if whenever hel), &, satisfies h=0 on K then ~A=0. For such sets,
it is clear that there exists, for each n, a collection of m(n) points AW c K
with V,(4™) #0.

7.2. THEOREM. Let K< RY™ be a compact set which is determining for
U, %,. For each n, let A"™ be a set of m(n) points in K satisfying
Vi(A™)#0. Given f bounded on K, if limsup,_ , AY"=1 then
hm SUup, . » "f_ Lnf” }(/n = lim Sup, ., » dn(f’ K)l/"'

Proof. Let ¢>0 be arbitrary. For each nonnegative integer n» we may
select a polynomial p, € &, with

1= pall " < du(f, K)'7" +e.

Since p,e %,, we clearly have L, p,=p,; hence

"f— Lnf”K= Hf—pn+ann_Lnf”K
< ”f—pn ”K+An ”pn —f"K

=(1+4,) 1 f=pall k-

From the assumption that lim sup,, _, ., 4)*=1, and the fact that ¢> 0 was
arbitrary, we obtain the theorem.

Finally, we remark that arrays satisfying limsup,_ . 4Y"=1 do in
fact exist; for example, we can take, for each n, 4™ cK satisfying
maximc g | Va(x™) = |V, (A"™)|; we refer to A™ as a set of n-Fekete points
for K. In this case, by definition, 4, <m(n) and the sequence of numbers
{m(n)} satisfies lim m(n)'"=1.

n— o
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